1(a) \[
\frac{3}{4a^2 - 25} - \frac{2}{5 - 2a} = \frac{3}{(2a - 5)(2a + 5)} - \frac{2}{5 - 2a} = \frac{3(2a - 5)}{(2a - 5)(2a + 5)} + \frac{2}{2a - 5} = \frac{3 + 2(2a + 5)}{(2a - 5)(2a + 5)} = \frac{4a + 13}{(2a - 5)(2a + 5)}
\]

1(b) We have \(p \propto \frac{1}{q^2} \Rightarrow p = \frac{k}{q^2} \), where \(k \) is a constant.

When the value of \(q \) is tripled, new \(q = 3q \).

New \(p = \frac{k}{(3q)^2} = \frac{pq^2}{9q^2} = \frac{1}{9}p \)

Percentage decrease in \(p = \frac{1}{9} \frac{q-q}{q} \times 100\% = 88.9\% \)

1(c) \[
x + 2 = \frac{5y - 1}{x} \\
x^2 + 2x = 5y - 1 \\
x^2 + 2x + 1 = 5y \\
(x + 1)^2 = 5y \\
x = -1 \pm \sqrt{5y}
\]

2(a) Monthly rental = \(\frac{1000}{5} \times 4 \)

= $800

2(b) Interest = \(1000\left(1 + \frac{1.45}{12 \times 100}\right)^{36} - 1000 \)

= $44.43
2(c) Amount borrowed = $5888 \times 70\% \\
= $4121.60
Let the interest rate be \(r \% \).
\[
4121.60 \left(1 + 2 \times \frac{r}{100}\right) = 24 \times 201.31 \\
r = 8.61\% \\
The simple interest rate is 8.61\% p.a.

2(d) Old income in Singapore Dollars = \(\frac{1000}{5} \times 15\) \\
= SGD3000
New Income in Singapore Dollars = 3000 \times 1.23 \\
SGD 3690 : £1900
SGD \frac{3690}{1900} : £1 \\
The exchange rate is £1 = SGD1.94.

2(e) Amount of water bill before GST = 40(1.3)(1.7) + 5.2(1.4)(1.45) \\
= 71.396
Amount of water bill with GST = 71.396 \times 1.07 \\
= $76.39

3(a) Amount paid in 2012 = \(\frac{420}{x}\)

3(b) Amount paid in 2013 = \(\frac{450}{x + 20}\)

3(c) \[
\frac{420}{x} - \frac{450}{x + 20} = 20 \\
420(x + 20) - 450x = 20x(x + 20) \\
420x + 8400 - 450x = 20x^2 + 400x \\
20x^2 + 430x - 8400 = 0 \\
2x^2 + 43x - 840 = 0
\]

3(d) \[
x = \frac{-43 \pm \sqrt{43^2 - 4(2)(-840)}}{2(2)} \\
x = 12.39222 \text{ or } \ x = -33.89222 \\
x = 12.4 \text{ or } \ x = -33.9
3(e) \[x = -33.9 \text{ rejected } \Rightarrow x > 0 \]
Maximum no. of hours = \[12.39222 + 20 \]
\[= 32.39222 \text{ h} \]
\[= 32 \text{ hours (nearest hour)} \]

4(a) \[\angle AOE = \frac{2\pi}{5} \]
\[= 1.2566 \text{ radians} \]

4(b)(i) Area of \(\Delta AOE = \frac{1}{2} (10^2) \sin 1.2566 \]
\[= 47.55283 \]
Area of pentagon \(ABCDE = 5 \times 47.55283 \]
\[= 237.76413 \]
\[= 238 \text{ cm}^2 \]

4(b)(ii) Area of sector \(AOE = \frac{1}{2} (10^2) \cdot 1.2566 \]
\[= 62.83 \]
Area of shaded region = \[5(62.83) - 237.76413 \]
\[= 76.4 \text{ cm}^2 \]

5(a)(i) 196 cm

5(a)(ii) Upper quartile = 214 cm
Lower quartile = 178 cm
Interquartile Range = 214 - 178 = 36 cm

5(a)(iii) any value/range that is in 222 - 240 cm

5(b) No. of students at 50\(^{th}\) percentile = 200 students
No. of students at 70\(^{th}\) percentile = 280 students
Probability = \[\frac{80}{400} \times \frac{79}{399} = \frac{79}{1995} \]

5(c) For school \(Y \),
median = 196 cm
interquartile range = 202 - 190 = 12 cm

Since the interquartile range of School \(Y \) is 12 cm, which is smaller than the interquartile range of School \(X \) at 36 cm, the cumulative frequency curve of School \(Y \) will be than the given curve by the median.

6(a) \(EA = CB \) (rhombus has equal sides)
\(AC \) is the common side
\(\angle EAC = \angle ACB \) (alt \(\angle, \ EA//CB \))
By SAS congruency, \(\triangle ABC \equiv \triangle CEA \).
6(b) \(\triangle FYG \) is similar to \(\triangle BYC \).
\[\angle FYG = \angle CYB \text{ (vert. opp \(\angle \))} \]
\[\angle GFY = \angle YBC \text{ (alt \(\angle \), \(FG \parallel CB \))} \]
By AA similarity, \(\triangle FYG \) is similar to \(\triangle BYC \).

\(\triangle FYG \) is similar to \(\triangle CYA \).
\[\angle CYG = \angle FYG \text{ (common \(\angle \))} \]
\[\angle YFG = \angle YXA \text{ (corr \(\angle \), \(FG \parallel XA \))} \]
By AA similarity, \(\triangle FYG \) is similar to \(\triangle CYA \).

6(c)(i) \[
\frac{\text{Area of } \triangle AYB}{\text{Area of } \triangle FYC} = \left(\frac{4}{6} \right)^2 = \frac{4}{9}
\]

6(c)(ii) \[
\frac{\text{Area of } \triangle CBY}{\text{Area of } \triangle YAB} = \frac{0.5 \times YC \times h}{0.5 \times AY \times h} = \frac{3}{2}
\]

6(c)(iii) \[
\frac{\text{Area of rhombus } ABCE}{\text{Area of } \triangle CFG} = \frac{2 \times \text{Area of } \triangle ACE}{\text{Area of } \triangle CFG} = 2 \times \left(\frac{10}{15} \right)^2 = \frac{8}{9}
\]

7(a) By cosine rule,
\[XY^2 = 1.8^2 + 3.2^2 - 2(1.8)(3.2)\cos64^\circ \]
\[XY = \sqrt{1.8^2 + 3.2^2 - 2(1.8)(3.2)\cos64^\circ} \]
\[XY = 2.9034 \text{ km (shown)} \]

7(b) By sine rule,
\[\sin \angle AXY = \sin 66^\circ \]
\[\frac{1.32}{2.90344} = \frac{1.32 \sin 66^\circ}{2.90344} \]
\[\angle AYX = 0.41533^\circ \]
\[\angle AXY = 180^\circ - 66^\circ - 0.41533^\circ = 113.58467^\circ \]

Area of land plot \(AYXB = \frac{1}{2} (3.2)(1.8) \sin 64^\circ + \frac{1}{2} (1.32)(2.90344) \sin 113.58467^\circ \]
\[= 4.34 \text{ km}^2 \]
7(c) \[\tan 61^\circ = \frac{3.2}{d} \]
\[d = \frac{3.2}{\tan 61^\circ} \]
\[d = 1.77379 \]

Distance from point \(X = 1.77 \text{ km (3 s.f.)} \)

7(d) \[\sin 80^\circ = \frac{\text{shortest distance}}{4.48} \]
Shortest distance = \(4.48 \sin 80^\circ \)
\[= 4.41 \text{ km (3 s.f.)} \]

8(a)(i) \[|XY| = \sqrt{4 + 25} \]
\[= \sqrt{29} \]
\[= 5.39 \text{ units} \]

8(a)(ii) \[\overrightarrow{OY} - \overrightarrow{OX} = \begin{pmatrix} -2 \\ 5 \end{pmatrix} \]
\[\overrightarrow{OY} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \end{pmatrix} \]
Coordinates of \(Y = (1, 6) \)

8(b)(i)(a) \[\overrightarrow{AO} = \mathbf{b} \]
\[\overrightarrow{AE} = \mathbf{a} + \mathbf{b} \]

8(b)(i)(b) \[\overrightarrow{BC} = \mathbf{a} + \mathbf{b} \]
\[\overrightarrow{AB} = 6\mathbf{b} - \mathbf{a} - \mathbf{b} \]
\[= 5\mathbf{b} - \mathbf{a} \]
\[\overrightarrow{AF} = \frac{1}{5}(5\mathbf{b} - \mathbf{a}) \]

8(b)(i)(c) \[\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF} \]
\[= -\mathbf{b} + \frac{1}{5}(5\mathbf{b} - \mathbf{a}) \]
\[= -\frac{1}{5}\mathbf{a} \]

8(b)(ii) \[\overrightarrow{FE} = 6\overrightarrow{FO} \]
1. \(FE = 6FO \)
2. \(FE \parallel FO \Rightarrow F \) is the common point. \(O, E \) and \(F \) lies on the same line.
9(a)(i) Height = \(\sqrt{15^2 - 6^2} + 7 \)
= \(\sqrt{189} + 7 \)
= 20.748
= 20.7 cm (3 s.f)

9(a)(ii) Outer Surface Area = \(\pi(6)(15) + 2\pi(6)(7) \)
= 546.64
= 547 cm\(^2\)

9(b) Volume = \(\frac{1}{3} \pi(6^2)(13.748) + \pi(6^2)(7) \)
= 1309.9687
= 1310 cm\(^3\)

9(c) Volume of 3 spherical balls = 13 cm\(^3\)
Volume of a spherical ball = \(\frac{13}{3} \) cm\(^3\)

\[\frac{4}{3}\pi r^3 = \frac{13}{3} \]
\[r^3 = \frac{13}{4\pi} \]
\[r = 1.01137 \]
\[r = 1.01 \text{ cm} \]
Radius = 1.01 cm

10(a) (i)(a) Mean = \(\frac{3(0.6) + 1.2 + 3(1.5) + 1.8 + 1.9 + 5(2.1) + 3.5}{15} \)
= $1.68

10(a)(i)(b) Standard deviation
\[= \sqrt{\frac{3(0.6^2) + 1.2^2 + 3(1.5^2) + 1.8^2 + 1.9^2 + 5(2.1^2) + 3.5^2}{15} - 1.68^2} \]
= $0.73

10(a)(ii) Median = $1.80

10(a)(iii) The boys generally spend more on lunch per day as the mean amount of money spent by the boys is $2.51, higher than the mean amount of money spent by the girls at $1.68.
10(b)(i) \(P(\text{product} = 0) = 0 \)

10(b)(ii)(a) \(P(\text{at least one of the number is a multiple } 3) = \frac{1}{2} \)

10(b)(ii)(b) \(P(\text{number on } 4\text{-sided die} > \text{number on } 6\text{-sided die}) = \frac{5}{12} \)

11(a) \(a = 261 \)

11(c) Corresponding selling price = 181.82 ± 5

Maximum profit = 643.27 ± 10

11(d) Gradient = -5.2

11(e)(i) \[
4000S - 42000 = 11S^2 \\
-11S^2 + 4000S - 42000 = 0 \\
- \frac{11}{500}S^2 + 8S - 84 = 0 \\
S = 10.8 \pm 5 \text{ or } S = 352.8 \pm 5
\]

11(e)(ii) The answer in (e)(i) is the selling price of Lady Kaka’s concert ticket in order to break even.

OR

A concert ticket must be sold between $10.80 to $352.80 make a profit.